MIC426/427/428

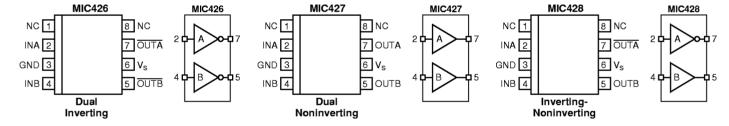
Dual 1.5A-Peak Low-Side MOSFET Driver

Bipolar/CMOS/DMOS Process

General Description

The MIC426/427/428 are dual high speed drivers. A TTL/ CMOS input voltage level is translated into an output voltage level swing equal to the supply. The DMOS output will be within 25mV of ground or positive supply. Bipolar designs are capable of swinging only within 1 volt of the supply.

The low impedance high current driver outputs will swing a 1000pF load 18V in 30ns. The unique current and voltage drive qualities make the MIC426/427/428 ideal power MOSFET drivers, line drivers, and dc-to-dc converter building blocks.


Input logic signals may equal the power supply voltage. Input current is a low $1\mu A$ making direct interface to CMOS/bipolar switch-mode power supply control integrated circuits possible as well as open-collector analog comparators.

Features


•	High Speed Switching (C _L = 1000pF)	30ns
•	High Peak Output Current	1.5 A
•	High Output Voltage Swing	V _S – 25mV
		GND + 25mV
•	Low Input Current (Logic "0" or "1")	1μΑ
•	Low Equivalent Input Capacitance (typ)	6pF
•	TTL/CMOS Input Compatible	
•	Available in Inverting & Non-Inverting Co	onfigurations
•	Wide Operating Supply Voltage	4.5V to 18V
•	Low Power Consumption	
	(Inputs Low)	0.4mA
	(Inputs High)	8mA
•	Single Supply Operation	
•	Low Output Impedance (typ)	6Ω

Pin Out Equivalent to DS0026 & MMH0026

Pin Configuration

Functional Diagram

Ground Unused Inputs

Quiescent power supply current is 8mA maximum. The MIC426 requires 1/5 the current of the pin compatible bipolar DS0026 device. This is important in dc-to-dc converter applications with power efficiency constraints and high frequency switch mode power supply applications. Quiescent current is typically

6mA when driving a 1000pF load 18V at 100kHz.

The inverting MIC426 driver is pin compatible with the bipolar DS0026 and MMH0026 devices. The MIC427 is non-inverting; the MIC428 contains an inverting and non-inverting driver.

Ordering Information

Part Number	Temperature Range	Package	Configuration
MIC426CM MIC426BM	0°C to +70°C –40°C to +85°C	8-pin SOIC	Dual Inverting
MIC426CN MIC426BN	0°C to +70°C –40°C to +85°C	8-pin plastic DIP	Dual Inverting
MIC426AJ 5962-8850301PA ¹	–55°C to +125°C –55°C to +125°C	8-pin CerDIP	Dual Inverting
5962-8850302PA ²	-55°C to +125°C	8-pin CerDIP	Dual Noninverting
5962-8850303PA ³	−55°C to +125°C	8-pin CerDIP	Noninverting + Inverting

¹ Standard Military Drawing number for MIC426AJBQ

Absolute Maximum Ratings (Notes 1, 2, and 3)

If Military/Aerospace specified devices are required, contact Micrel for availability and specifications.

Supply Voltage Input Voltage Any Terminal Maximum Chip Temperature Storage Temperature Lead Temperature (10 sec) Package Thermal Resistance	20V V _S + 0.3V to GND – 0.3V 150°C –65°C to 150°C 300°C
CerDIP $R_{\theta J-A}$ (°C/W) CerDIP $R_{\theta J-C}$ (°C/W) PDIP $R_{\theta J-A}$ (°C/W) PDIP $R_{\theta J-C}$ (°C/W) SOIC $R_{\theta J-A}$ (°C/W) SOIC $R_{\theta J-C}$ (°C/W)	100 50 130 42 120 75
Operating Temperature Range C Version B Version A Version	0°C to +70°C -40°C to +85°C -55°C to +125°C

5-10 1997

² Standard Military Drawing number for MIC427AJBQ

³ Standard Military Drawing number for MIC428AJBQ

Electrical Characteristics: $T_A = 25^{\circ}C$ with $4.5V \le V_S \le 18V$ unless otherwise specified.

Symbol	Parameter	I	ı J		i .	
	I arameter	Conditions	Min	Тур	Max	Units
V_{IH}	Logic 1 Input Voltage		2.4	1.4		٧
V_{IL}	Logic 0 Input Voltage			1.1	0.8	V
I _{IN}	Input Current	0 ≤ V _{IN} ≤ V _S	-1		1	μΑ
UT						
V _{OH}	High Output Voltage		V _S -0.025			>
V _{OL}	Low Output Voltage				0.025	٧
Ro	Output Resistance	$V_{IN} = 0.8V$ $I_{OUT} = 10$ mA, $V_{S} = 18V$		6	15	Ω
RO	Output Resistance	V _{IN} = 2.4V I _{OUT} = 10mA, V _S = 18V		6	10	Ω
l _{PK}	Peak Output Current			1.5		Α
CHING TIM	E					
T _R	Rise Time	Test Figures 1, 2		18	30	ns
T _F	Fall Time	Test Figures 1, 2		15	20	ns
T _{D1}	Delay Time	Test Figures 1, 2		17	40	ns
T _{D2}	Delay Time	Test Figures 1, 2		23	75	ns
R SUPPLY	1					
Is	Power Supply Current	V _{IN} = 3.0V (Both Inputs)		1.4	8.0	mA
IS	Power Supply Current	V _{IN} = 0.0V (Both Inputs)		0.18	0.4	mA
	VIH VIL IIN VOH VOL RO IPK CHING TIM TR TF TD1 TD2 R SUPPLY	VIH Logic 1 Input Voltage VIL Logic 0 Input Voltage IIN Input Current VOH High Output Voltage VOL Low Output Voltage RO Output Resistance IPK Peak Output Current CHING TIME TR Rise Time TF Fall Time TD1 Delay Time TD2 Delay Time R SUPPLY IS Power Supply Current	VIH Logic 1 Input Voltage VIL Logic 0 Input Voltage IIN Input Current 0 ≤ VIN ≤ VS TOT VOH High Output Voltage VOL Low Output Voltage RO Output Resistance VIN = 0.8V IOUT = 10mA, VS = 18V VIN = 2.4V IOUT = 10mA, VS = 18V Peak Output Current CHING TIME TR Rise Time Test Figures 1, 2 TF Fall Time Test Figures 1, 2 TD1 Delay TIme Test Figures 1, 2 TD2 Delay Time Test Figures 1, 2 Test Figures 1	V _{IH} Logic 1 Input Voltage 2.4 V _{IL} Logic 0 Input Voltage -1 I _{IN} Input Current 0 ≤ V _{IN} ≤ V _S -1 UT VOH High Output Voltage V _S -0.025 VOL Low Output Voltage V _{IN} = 0.8V RO Output Resistance V _{IN} = 0.8V I _{OUT} = 10mA, V _S = 18V V _{IN} = 2.4V I _{OUT} = 10mA, V _S = 18V V _{IN} = 2.4V I _{OUT} = 10mA, V _S = 18V CHING TIME CHING TIME T _R Rise Time Test Figures 1, 2 T _D Delay Time Test Figures 1, 2 T _{D2} Delay Time Test Figures 1, 2 R SUPPLY I _S Power Supply Current V _{IN} = 3.0V (Both Inputs)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V _{IH} Logic 1 Input Voltage 2.4 1.4 V _{IL} Logic 0 Input Voltage 1.1 0.8 I _{IN} Input Current $0 \le V_{IN} \le V_{S}$ −1 1 JT VOH High Output Voltage V_{S} –0.025 VOL Low Output Voltage V_{S} –0.025 RO Output Resistance V_{IN} = 0.8V 0.8V 0.0T = 10mA, V_{S} = 18V 6 15 RO Output Resistance V_{IN} = 2.4V 0.0T = 10mA, V_{S} = 18V 6 10 Ipk Peak Output Current 1.5 1.5 CHING TIME TR Rise Time Test Figures 1, 2 18 30 TF Fall Time Test Figures 1, 2 15 20 TD1 Delay Time Test Figures 1, 2 17 40 TD2 Delay Time Test Figures 1, 2 23 75 R SUPPLY Is Power Supply Current V_{IN} = 3.0V (Both Inputs) 1.4 8.0

Electrical Characteristics:

Over operating temperature range with $4.5 \text{V} \leq \text{V}_\text{S} \leq 18 \text{V}$ unless otherwise specified.

No.	Symbol	Parameter	Conditions	Min	Тур	Max	Units	
INPU	INPUT							
1	V _{IH}	Logic 1 Input Voltage		2.4	1.5		٧	
2	V _{IL}	Logic 0 Input Voltage			1.0	0.8	V	
3	I _{IN}	Input Current	0 ≤ V _{IN} ≤ V _S	-10		10	μΑ	

Electrical Characteristics:

Over operating temperature range with $4.5V \le V_S \le 18V$ unless otherwise specified (Continued).

No.	Symbol	Parameter	Conditions	Min	Тур	Max	Units
OUTF	PUT						
4	V _{OH}	High Output Voltage		V _S -0.025			٧
5	V _{OL}	Low Output Voltage				0.025	٧
6	Ro	Output Resistance	V _{IN} = 0.8V I _{OUT} = 10mA, V _S = 18V		8	20	Ω
7	Ro	Output Resistance	V _{IN} = 2.4V I _{OUT} = 10mA, V _S = 18V		10	15	Ω
SWIT	CHING TIME	E		_			
8	T _R	Rise Time	Test Figures 1, 2		20	60	ns
9	T _F	Fall Time	Test Figures 1, 2		29	40	ns
10	T _{D1}	Delay Time	Test Figures 1, 2		19	60	ns
11	T _{D2}	Delay Time	Test Figures 1, 2		27	120	ns
POW	ER SUPPLY						
12	IS	Power Supply Current	V _{IN} = 3.0V (Both Inputs)		1.5	12.0	mA
13	IS	Power Supply Current	V _{IN} = 0.0V (Both Inputs)		0.19	0.6	mA

Note 1: Functional operation above the absolute maximum stress ratings is not implied.

Note 2: Static sensitive device (above 2kV). Unused devices must be stored in conductive material to protect devices from static discharge and static fields.

Note 3: Switching times guaranteed by design.

5-12 1997

Switching Time Test Circuits

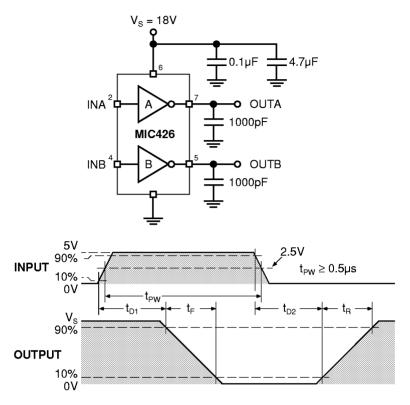
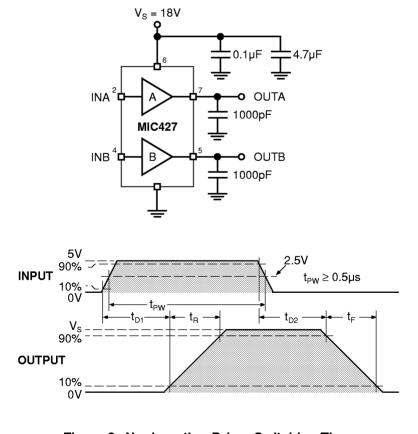
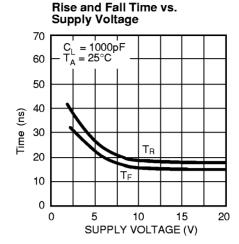
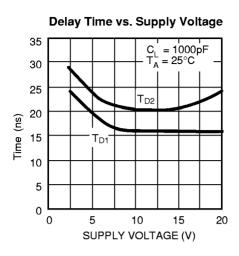
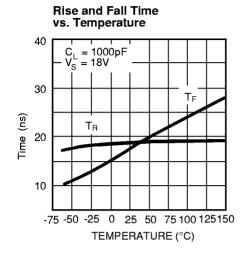
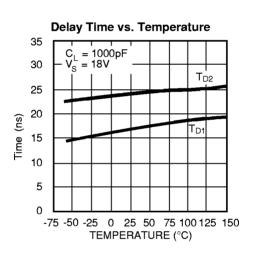
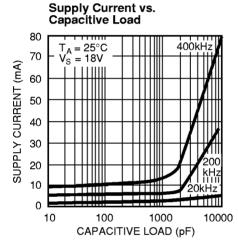
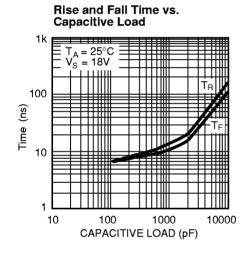


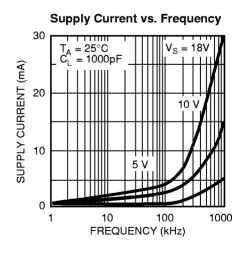
Figure 1. Inverting Driver Switching Time

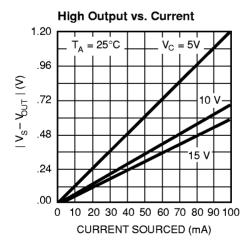





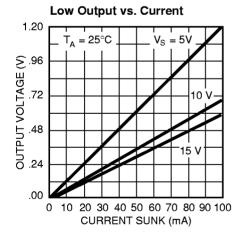

Figure 2. Noninverting Driver Switching Time

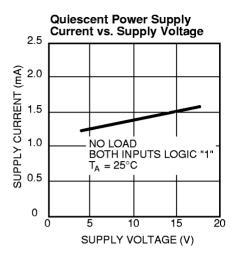

Typical Characteristic Curves

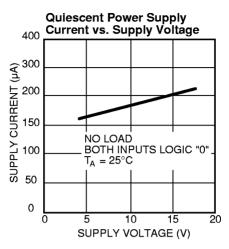


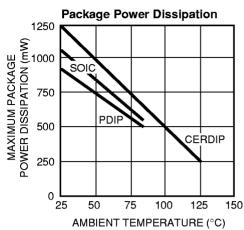












5-14 1997

Typical Characteristic Curves (Continued)

Supply Bypassing

Charging and discharging large capacitive loads quickly requires large currents. For example, changing a 1000pF load 18 volts in 25ns requires a 0.8A current from the device power supply.

To guarantee low supply impedance over a wide frequency range, a parallel capacitor combination is recommended for supply bypassing. Low inductance ceramic disk capacitors with short lead lengths (< 0.5 inch) should be used. A $4.7\mu F$ solid tantalum capacitor in parallel with one or two $0.1\mu F$ ceramic disk capacitors normally provides adequate bypassing.

Grounding

The MIC426 and MIC428 contain inverting drivers. Ground potential drops developed in common ground impedances from input to output will appear as negative feedback and degrade switching speed characteristics.

Individual ground returns for the input and output circuits or a ground plane should be used.

Input Stage

The input voltage level changes the no load or quiescent supply current. The N channel MOSFET input stage transistor drives a 2.5mA current source load. With a logic "1" input, the maximum quiescent supply current is 8mA. Logic "0" input level signals reduce quiescent current to 400 μ A maximum. Minimum power dissipation occurs for logic "0" inputs for the MIC426/427/428; unused driver inputs **must be grounded or tied to the positive supply.**

The drivers are designed with 100mV of hysteresis. This provides clean transitions and minimizes output stage current spiking when changing states. Input voltage thresholds are approximately 1.5V making the device TTL compatible over the 4.5V to 18V operating supply range. Input current is less than $1\mu A$ over this range.

The MIC426/427/428 may be directly driven by the TL494, SG1526/1527, SG1524, SE5560 and similar switch-mode power supply integrated circuits.

Power Dissipation

The supply current vs. frequency and supply current vs. capacitive load characteristic curves will aid in performing power dissipation calculations.

The MIC426 CMOS drivers have greatly reduced quiescent dc power consumption. Maximum quiescent current is 8mA compared to the DS0026 40mA specification. For a 15V supply, power dissipation is typically 40mW.

Two other power dissipation components are:

- Output stage ac and dc load power.
- Transition state power.

Output stage power is:

$$P_{O} = P_{DC} + P_{AC}$$

= $V_{O} (I_{DC}) + f C_{L} V_{S}^{2}$

Where: $V_O = dc$ output voltage

I_{DC} = dc output load current

f = Switching frequency

 V_S = Supply voltage

In power MOSFET drive applications, the P_{DC} term is negligible. MOSFET power transistors are high impedance, capacitive input devices. In applications where resistive loads or relays are driven, the P_{DC} component will normally dominate.

The magnitude of PAC is readily estimated for several cases:

A. 1. f = 200kHz

2. $C_L = 1000pF$

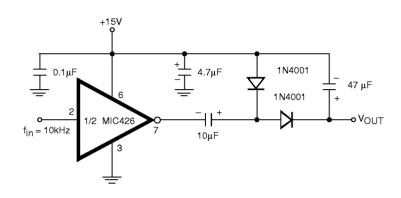
3. $V_S = 18V$

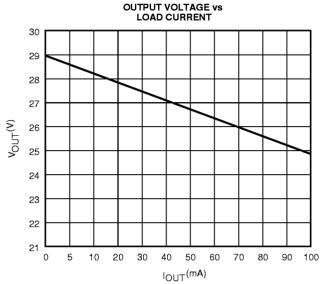
4. $P_{AC} = 65 \text{mW}$

B. 1. f = 200kHz

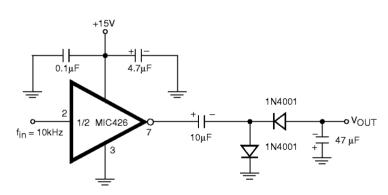
2. $C_L = 1000pF$

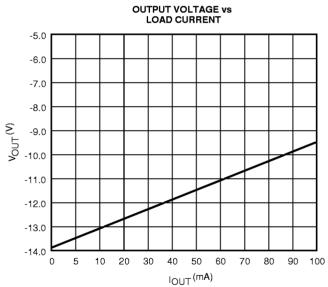
 $3. V_S = 15V$


4. $P_{AC} = 45 \text{mW}$


During output level state changes, a current surge will flow through the series connected N- and P- channel output MOSFETs as one device is turning "ON" while the other is

turning "OFF." The current spike flows only during output transitions. The input levels should not be maintained between the logic "0" and logic "1" levels. **Unused driver inputs must be tied to ground and not be allowed to float.** Average


power dissipation will be reduced by minimizing input rise times. As shown in the characteristic curves, average supply current is frequency dependent.


Voltage Doubler

Voltage Inverter

5-16 1997